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MINIMUM EVAPORATION IN TWO-PHASE FLOWS 
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Abstract-Design variables for attaining minimal evaporation rate by properly varying the cross-sections 
of ducts transporting gas-droplets flows are investigated for low concentrations of droplets. Applying 
variational techniques, the cases in which such a minimum exists are established, together with the general 
behavior of the mathematical solution. The exact longitudinal distribution of velocity (and cross-section 

area) is obtained numerically by the gradient method. 

NOMENCLATURE 

C 

C: 

drag coefficient; 
= QR,, non-dimensional specific heat of 
liquid; 

C PB’ = q&R,, non-dimensional specific heat at 
constant pressure of the gas mixture; 

c PU’ = cpv/yRg, non-dimensional specific heat at 
constant pressure of the vapors; 

Q = d/p,, non-dimensional density of liquid; 
F1, F,, F3, functions, defined by equations (2), (3), 

H, 
Hf cl> 

L, 
Nu, 
NUB 
p, 
Pr, 
P 003 

ro, 

R, 
Re, 
J-cl, 
SC, 
K 
u, 
UC. 
V, 
w,, 
X, 

(4); 
functional defined by equation (8); 
= hfg/Uf, non-dimensional heat of 
evaporation; 
= l/r,, non-dimensional length of the duct; 
Nusselt number for heat transfer; 
Nusselt number for mass transfer; 
= p/p, Uf, non-dimensional pressure; 
Prandtl number; 
= p”,,/p, Uf, non-dimensional vapor 
pressure; 
initial radius of droplets (at the duct 
entrance); 
= r/r,,, non-dimensional radius of droplet; 
Reynolds number based on droplet diameter; 
gas constant; 
Schmidt number; 
gas temperature at the throat; 
= u/U,, non-dimensional gas velocity; 
gas velocity at the throat: 
= u/U,, non-dimensional droplet velocity; 
= \vdp, U,, non-dimensional mass flow rate 
of droplets; 
= x/r,,, non-dimensional distance along the 
duct (measured from the entrance). 

Greek symbols 

Y> specific heat ratio of the gas mixture; 
e 8’ = T& non-dimensional gas temperature; 
0 P’ = T,/T,, non-dimensional droplet 

temperature; 
Ai, Lagrange multipliers; 
p, viscosity coefficient; 

* 
PP non-dimensional viscosity coefficient 

defined by equation (5); 

P, = p/p*, non-dimensional density of the gas 
mixture; 

Pt. gas density at the throat; 

xvg, vapor mole-fraction in the gas mixture; 

X”S? vapor mole-fraction at droplet surface. 

INTRODUCTION 

VERY few studies have, so far, dealt with the optimiza- 
tion of two-phase flows; Marble [l] calculated optimal 
contours of rocket nozzles for one-dimensional flows 
where maxima1 specific impulse for a given nozzle 
length is sought. Hoffman and Thomson [2] and 
Kraiko and Osipov [3] estimated maxima1 thrust 
obtained with an axi-symmetric nozzle for given length 
and area. However, these works are restricted to solid 
particles, without mass transfer between the phases. In 
practice, many two-phase flows take place inside trans- 
port devices with differing cross-sections and involve 
evaporation of droplets or aerosols, which affects the 
computations. Estimation of the total evaporation of 
thedispersed phase at a certain cross-section in a trans- 
port device depends on the variation of the flow 
properties with distance up to that point. These 
variations must be taken into account whenever it 
becomes desirable to minimize evaporation losses 
along the duct. In the present work we develop a new 
method to estimate the conditions which lead to such 
minimal evaporation losses. This involves distribution 
of velocity and temperature profiles to be obtained by 
properly varying the cross-section areas of the duct. 

The total evaporation of the entrained droplets is 
given by integration oflocal evaporation rates along the 
duct. The mathematical problem at hand is, therefore, 
to minimize this integral. Application of variational 
techniques to minimize this integral would thus lead to 
a differential equation for the velocity distribution 
(which, however, cannot be solved analytically for most 
practical cases). In the present work we calculate the 
exact solution numerically, employing the gradient 
method, with a high speed computer. 
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FOR.~ULATlON OF THE PROBLEMS 

The extremum problem to be solved here is for a 
one-dimensional gas flow entraining a low concentra- 
tion of spherical droplets of uniform initial radii. We 
assume that there is no mass or energy transfer from 
the bulk of the two-phase flow to the surroundings, 
and as the droplets concentration is very low, the ff ow 
is isentropic. Thus gas properties at each point depend 
onfy on initial conditions and local cross-section area, 
and can be calculated by the usual one-dimensional 
isentropic flow relations. All properties are made non- 
dimensional (dividing them by the gas critical condi- 
tions at a fictitious throat, which corresponds to the 
given stagnation conditions). Since local cross-sectional 
area becomes a single-valued function of the flow 
veiocity, other gas properties are to be expressed in 
terms of U, viz. : 

Lagrange type problem. A functional H is now dehned 

bY 

ff=$!+;+ -g -t-i2(F2 -2) 
-k-3., F3 -d”; (8) ( 1 

(la) 

The particle properties vary along the duct due to 
mass, energy and moments exchanges with the gas 
phase. The ordinary differential equations which 
describe these variations are, for diffusion controlled 
evaporation : 

2 = F,(W,, @,, V, U) = - 
3 W,P*N~D xus - xue -- 
2DR’VSc 1 -xus 

(2) 

where R = ~w~/w~~)1/3, 

and xVS is assumed to depend on the droplet tempera- 
ture according to the Clausius-Clapeyron equation 

The vapor mole fraction in the gas mixture xur, is 
assumed to be constant for low concentration of 
droplets. 

The total mass transfer at distance L is given by 

w,-w, = 

This integral is to be minimized, with equations 
(2)-(4) as differential constraints, which form together a 

where Ai (X) are Lagrange multipliers. H is, therefore, 
a function of X, the four dependent variables and their 
first derivatives. The Euler equations for this case are 

= 0, (j= 1,2,3,4). (9 

Applying these equations to the functional H results in 
the following: 

(lOa) 

1 GEL+] 
l ao, 

E.i+d~ =o 
“2 ao, dX 2 

(lob) 

This set can be considerably simplified by expressing 
Ai as a function of 3_2 [from (lob)] and then 1*3 can 
also be expressed in terms of iZ only [from (1Od)J. 
Introducing these results into (10 a,~) yields two 
second-order differential equations for &. The condi- 
tion that these two second-order differer~tial equations 
for & are consistent gives rise to a second-order 
ordinary differential equation, which with equations 
(2)-(4) makes a set of four simultaneous equations for 
the variables W,, Op, V, I/. 

BOUNDARY CONDlTIONS 

This set requires three boundary conditions for 
equations (2)-(4) and two for the additional equation. 
The initial conditions of the particles are their known 
entry conditions, i.e. their velocity, temperature and 
radii. Possible combinations of fixed or variable 
boundary conditions for the gas velocity U are now 
to be investigated. 

When the initial and final velocities are specified, 
the set supplemented with the required boundary 
conditions can be solved for optima1 vefocity distribu- 
tions between the two end values. In other cases the 
initial velocity is known, and the end value can vary. 
From the family of solutions, starting from the given 
value, the end value causing minimal evaporation must 
be chosen. In the most general case, the initial condi- 
tions are also variable and the optimal gas entry 
velocity must also be determined. 

For variable end values we require that 

g = 0 at X = 0, L. 
I 
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Applying (13) to the functional (8) one obtains 

A, = 1 

12=i3=0 at X=O,L 
(12) 

which, on substitution into (lOd), gives 

x=0 at X=OL 
au 

> . (13) 

By differentiating (2) with respect to CJ, for Nusselt 
number expressed as Nu, = 2+0.6S~“~Re’~~ (with a 
constant Schmidt number), one obtains 

8F1 3P(*w, 
m=- 2DRZVSc(l -x”J 

Although this equation relates the gas velocity U to 
the particle parameters V, B,,, R at the duct ends, it does 
not do so explicitly at X = L, as the parameters depend 
on the velocity distribution, which is as yet unknown. 
At X = 0, on the other hand, the initial values are 
known, and the optimal initial gas velocity can be 
calculated from (14). The general plot of F1 vs U is 
shown in Fig. 1, and we look for the possibility of 

v, 
0400 

X 

FIG. 1. Evaporation rate vs initial gas velocity. FIG. 2. Velocity distribution for minimum evaporation 
(V = 0,2, rJ0 = 0.5). 

getting aF1/aU = 0 at the ends. At U > V the deriva- 
tive is always negative, and at U = V, F1 reaches an 
absolute minimum with a discontinuous derivative 
(since Reynolds number if proportional to 1 U - VI). 
Equation (14) can be satisfied only for U x V, and not 
for any combination of initial conditions, e.g. for a 
given set of initial conditions the entrance velocity of the 
gas might have an optimal value much lower than 
the entry velocity of the droplets. In any case, the 
evaporation calculated for this optimal velocity distri- 
bution must be compared with the results for the 
absolute minimum U = V, which is always valid. 

For a given initial gas velocity, an optimal velocity 
distribution U = U(X) for minimum evaporation can 
be obtained with free final velocity expressed by 

equation (14), but not directly. A first rough estimate of 
the final velocity is obtained by assuming NuD = 2 (i.e. 
zero relative velocity between the phases). In this case 
the derivative is 

=1 _= 
au 

3(Y-l)w,P* VA 
DR2 VSc 80, 

As the derivative with respect to 0, cannot vanish, the 
extremum condition becomes 

U=O at X=L. (16) 

That is, to arrive at a minimum evaporation for 
given initial conditions, the flow must be decelerated 
along the duct to reach stagnation at the end. 

RESULTS AND CONCLUSIONS 

Instead of solving the simultaneous set of four 
differential equations, we used a computer program, 
designed to solve optimization problems of this type by 
the gradient method. Figure 2 presents the numerical 
results for droplets initial conditions V = 0.2, eP = 1.0, 
R = 1.0 moving along a duct of length L = 1000 where 
the initial gas velocity is U, = 0.5. Other constants are: 
y=1.4, c = 2.5, C, = 5.0, D = 560, /L* = 0.0225, 
HJg = 5.0 $d SC = Pr = 1. The drag coefficient has 
been expressed as C, = 0~48+28Re-0’s5. The figure 

““’ 

shows that the velocity must decrease towards the 
duct end, as was also deduced by assuming constant 
Nu, However, in the exact case a finite velocity is 
predicted instead of zero. The oscillation obtained 
between X = 600 to 800 starts when U and V 
approach equality. This could result from the discon- 
tinuities of the derivatives, as previously explained, and 
is insignificant physically. 

The percentage of evaporation obtained with the 
optimal velocity distribution is shown in Fig. 3, where 
a comparison is also made with the evaporation for 
constant velocity U = 0.5. In the latter case the total 
evaporation is 9.95 per cent while it decreases to 
8.65 per cent with the optimal velocity distribution, 
i.e. a relative reduction of 13 per cent. 
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FIG. 3. Evaporation rates for optimum velocity distribution 
and for constant gas velocity. 

Two arbitrary velocity distributions, bounding the 
optimal one, were also chosen in order to check the 

validity of the numerical optimization. Evaporation 
was then found to be higher than in the optimum case. 

The present analysis leads to the following conclu- 
sions : 

(1) For a variable entry velocity of the gas, a constant 

area duct with U = V. gives a minimum in total 
evaporation. 

(2) For a fixed entry velocity an optimal contour can 
be designed according to equations (2)-(4) and (10). 

For higher mass-flow rates of particles, the gas is 
affected by the entrained droplets, so that the flow is 
110 longer isentropic and the full conservation equations 

must be taken into account. The treatment of this 
case is different and will be reported elsewhere [4]. 
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EVAPORATION MINIMALE DANS DES ECOULEMENTS DIPHASIQUES 

R&sum&On ttudie diffkrents dispositifs pour atteindre le taux minimal d’tvaporation en faisant varier 
convenablement les sections droites de tubes travers& par des Ccoulements gazeux chargks de gouttes g 
faible concentration. En appliquant des techniques variationnelles on ktablit les cas dans lesquels un 
tel minimum existe et on associe le comportement gCnCra1 de la solution mathkmatique. On obtient 

numtriquement, par la m&hode du gradient, la distribution de vitesse (et l’aire de la section droite). 

VERDAMPFUNGS-MINIMUM IN ZWEIPHASENSTROMUNGEN 

Zlsammenfassung-Urn den Einflul3 von Auslegungsparametern im Hinblick auf minimale Verdampfung 
in Gas-Tropfen-Stramungen zu ermitteln, wird der StrGmungsquerschnitt in geeigneter Weise variiert. 
Die Untersuchung wird fiir geringe Tropfenkonzentrationen durchgeftihrt. Unter Anwendung der 
Variationstechnik werden die Fllle, fiir die ein Minimum existiert, festgelegt in Obereinstimmung mit 

der allgemeinen mathematischen LGsung. Die Geschwindigkeitsverteilung in LPngsrichtung wird 
numerisch mit Hilfe der Gradientenmethode gewonnen. 

OI-IPEAEJlEHME MMHMMAJlbHOti CKOPOCTM MCflAPEHM5l B 
flBYX0A3HbIX IlOTOKAX 

tiOTa,,HR - M3y4eHbI paCYeTHbIe nepeMeHHble, HCnOnbrlyeMble L”R OflpeLIefleHHR MMHHManbHOti 

CKO~OCTH acnapeHvla nyTeM cooTeeTcTBymqer0 H3MeHeHHH nonepeqsbix ceqeHW2 ~py6, neperrocfl- 

UViX aByX+a3Hble nOTOKH ra3GKHJlKOCTb npl4 MaJlblX KOHUeHTpaUHHX KaneJIb. c TIOMOUlbH) BapHa- 

UHOHHblX MeTOnOB OnpenenaHZW2SI CnyYalt, B KOTOpbiX CyLUeCTByeT TaKaR MHHHMaJTbHafl CKOpOCTb 

HcnapeHrtn, a TaKXce yCTaHaBJIHBaeTCa odluee noaeneHue MaTeMaTU’leCKOrO pemeHHn. c nOMOLUbH) 

rpanAefiTHor0 Mefona YHcneHHo nonyreH0 ToYHoe npononbHoe pacnpeneneHiie CKOPOCTM (H 

nnotuanH nonepesHor0 ceSeHiia). 


